Generating Artificial Data with Monotonicity Constraints
نویسندگان
چکیده
The monotonicity constraint is a common side condition imposed on modeling problems as diverse as hedonic pricing, personnel selection and credit rating. Experience tells us that it is not trivial to generate artificial data for supervised learning problems when the monotonicity constraint holds. Two algorithms are presented in this paper for such learning problems. The first one can be used to generate random monotone data sets without an underlying model, and the second can be used to generate monotone decision tree models. If needed, noise can be added to the generated data. The second algorithm makes use of the first one. Both algorithms are illustrated with an example.
منابع مشابه
Predictive Risk Mapping of Leptospirosis for North of Iran Using Pseudo-absences Data
Leptospirosis is a common zoonosis disease with a high prevalence in the world and is recognized as an important public health drawback in both developing and developed countries owing to epidemics and increasing prevalence. Because of the high diversity of hosts that are capable of carrying the causative agent, this disease has an expansive geographical reach. Various environmental and social ...
متن کاملGenerating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms
UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...
متن کاملby machine learning
1. Objectives: The aim was to evaluate the potential for monotonicity constraints to bias machine learning systems to learn rules that were both accurate and meaningful. 2. Methods: Two data sets from problems as diverse as screening for dementia and assessing the risk of mental retardation were collected and a rule learning system with and without monotonicity constraints was run on each. The ...
متن کاملActive Learning with Monotonicity Constraints
In many applications of data mining it is known beforehand that the response variable should be increasing (or decreasing) in the attributes. We propose two algorithms to exploit such monotonicity constraints for active learning in ordinal classification in two different settings. The basis of our approach is the observation that if the class label of an object is given, then the monotonicity c...
متن کاملLearning Rule Ensembles for Ordinal Classification with Monotonicity Constraints
Ordinal classification problems with monotonicity constraints (also referred to as multicriteria classification problems) often appear in real-life applications, however, they are considered relatively less frequently in theoretical studies than regular classification problems. We introduce a rule induction algorithm based on the statistical learning approach that is tailored for this type of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005